噴氨格柵設計不當或煙氣氣流分布不均勻時,容易造成NOx和NH3的混合及反應不均勻,不但影響脫硝效率及經濟性,而且極易造成局部噴氨過量。脫硝裝置投運前,應調整煙氣氣流的分布情況,調整各氨氣噴嘴閥門的開度,使各氨氣噴嘴流量與煙氣中需還原的NOx含量相匹配,以免造成局部噴氨過量。
NH3-NOx混合濃度偏差往往會隨運行時間的推移越來越大,部分區(qū)域氨逃逸濃度遠遠超過3ppm,而局部NOx濃度則達不到環(huán)保指標要求。電廠往往被迫通過加大噴氨量來維持出口NOx排放濃度,既增加了很多氨耗量,同時也使形成硫酸氫氨(ABS)的幾率大大增加。
為什么要進行噴氨格柵(AIG)優(yōu)化調整?
氨格柵(AIG)優(yōu)化調整是通過調節(jié)各個噴氨支管的噴氨量,使NH3和NOx混合更均勻。一般脫硝機組噴氨格柵(AIG)優(yōu)化調整的頻次為每年一次,可根據機組運行情況適當增加優(yōu)化頻次。
基于全區(qū)域NH3/NOx等摩爾比理念,并綜合考慮該反應器入口的濃度場和速度場狀況進行噴氨格柵優(yōu)化。調整后,在660、500、330MW3種典型工況下,NOx濃度大偏差分別降至5.8、10.3、11.8mg?m-3,NH3逃逸率由調前的4.64μL?L-1分別降至調后的2.67、3.03、2.14μL?L-1。系統(tǒng)總效率基本不變,但效率峰谷差異下降明顯。
選擇性催化還原技術是當前世界上脫氮主流工藝?;痣姀S大氣污染物排放控制標準GB13223-2011的頒布使國內在短期內大面積投運SCR脫硝系統(tǒng),相關學者[1-7]在流場、系統(tǒng)模擬方面也做了較多研究;但在運行優(yōu)化方面前期缺乏積累,逐漸暴露出諸如效率不穩(wěn)、空氣預熱器堵塞嚴重,甚至爐膛負壓波動劇烈,不得不停爐吹掃等問題[8-11]。
NO、O2進出口濃度采用德國德圖公司Testo350型煙氣分析儀測定,NO量程0~500μL?L-1,精度0.1μL?L-1,O2量程0%~25%,精度0.01%;NH3逃逸率采用自制氨化學取樣系統(tǒng)測定,配套用3071型智能煙氣采樣器流量范圍1.0~3.0L?min-1,精度±5%,煙氣取樣槍長度為5m,壓力測試用WOBI膜盒壓力表,量程0~2000Pa,精度±5Pa,配套4.5m的S型皮托管1根,校正系數為0.84。
可以看出,根據出口NOx濃度和氨逃逸濃度的對應關系,NOx濃度較低的區(qū)域對應較大的噴氨量,極易產生較大氨逃逸濃度。B1、A5等2個測孔位置出口NOx濃度均小于20mg?m-3,其代價是很大的噴氨量和較高的氨逃逸。